
PROGRAMMING I  1 

http://www.myteacherpages.com/webpages/jsmoyer/ MR. JEREMY SMOYER 

Searching and Sorting 
 
As we continue to deal with larger amounts of data in our programs by using 
files there are two main problems that come up.  
 
Searching the data (in an array) to determine the location of a particular 
value. 
 
And, sorting the data (in an array) to rearrange the elements in an ordered 
fashion.  
 
We may want to search a list of scores to see if a student got a particular 
score. We may want to sort that list in decreasing order by score.  
 
The notes for this section with focus on the process or the algorithm used 
to accomplish these tasks.  
 
The code becomes relatively minor when the algorithm is understood.  
 
Finding the Smallest Value in an Array 
 
We’ve seen some sorting done in our cards program where we needed to 
order the cards given by the random number generator.  
 
But, what about a larger list of numbers?  
 
The steps (algorithm) to search an array for the index of the smallest value 
are: 
 

1) Assume that the first element is the smallest so far and save its 
subscript as “the subscript of the smallest element found so far” 
 
2) For each array element after the first one: 
 
 2.1) If the current element < the smallest so far 
 

2.1.1) Save the subscript of the current element as the 
“subscript of the smallest element found so far” 



PROGRAMMING I  2 

http://www.myteacherpages.com/webpages/jsmoyer/ MR. JEREMY SMOYER 

Example 
 
int findMin(const int x[],int startIndex,int endIndex) 
{ 
 int minIndex;   // index of the smallest element found 
 int i;   // index of the current element 
 
    // Validate subarray bounds 
    if ((startIndex < 0) || (startIndex > endIndex)) 
    { 
        cout << "Error in subarray bounds" << endl; 
        return -1; // return error indicator 
    } 
 

// Assume the first element of subarray is smallest 
and check the rest. 
// minIndex will contain subscript of smallest 
examined so far. 

    
 minIndex = startIndex; 
    for (i = startIndex + 1; i <= endIndex; i++) 
        if (x[i] < x[minIndex]) 
           minIndex = i; 
 
    // All elements are examined and minIndex is 
    // the index of the smallest element. 
    
return minIndex; 
} 
 
Array Search 
 
We can search and array for a particular element by comparing each array 
element, starting with the first (subscript 0), to the target, with the value 
we are seeking.  
 
If the match occurs, we have found the target and return the subscript of 
its location.  
 
If we test all elements without finding a match, return -1 to indicate it was 
not found.  
 
We choose -1 because no array element has a negative subscript.  
 



PROGRAMMING I  3 

http://www.myteacherpages.com/webpages/jsmoyer/ MR. JEREMY SMOYER 

Algorithm 
 
1) - For each array element 
 
 1.1) - If the current element contains the target 
 
 1.2) - Return the subscript of the current element 
 
2) - Return -1 
 
Example 
 
int linear_search(int target)  
{ 

const int items[] = {44, 58, 23, 90, 12, 10, 13, 15};         
int size = 8; 
for (int i = 0; i < size; i++) 
  if (items[i] == target) 
   return i; // found, return subscript 
// All elements were tested without success. 
return -1;  

} 
 
 
 
 
Sorting in Ascending Order 
 
Often times when working with large amounts of data, programs will run 
more efficiently if the data is first sorted.  
 
We are covering one simple sort algorithm for now but of course there are 
many others.  
 
Selection Sort 
 
The selection sort is a fairly intuitive sorting algorithm.  
 
To perform a selection sort of n elements (subscripts 0 to n-1), we locate 
the smallest element in the array and then switch the smallest element with 



PROGRAMMING I  4 

http://www.myteacherpages.com/webpages/jsmoyer/ MR. JEREMY SMOYER 

the element at subscript 0.  
 
This will place the smallest element found so far in location 0.  
 
We then locate the smallest element remaining in the subarray with 
subscripts 1 through n-1 and switch it with the element at subscript 1. 
 
This places the 2nd smallest element at subscript 1. 
 
We continue this until all items are placed.  
 
Algorithm 
 
1) - Starting with the first item in the array and ending with the next-to-
last item 
 

1.1) - Set i equal to the subscript of the first item in the subarray to 
be processed in the next steps. 
 
1.2) - Find the subsript of the smallest item in the subarray with the 
subscripts ranging from i through n-1. 
 
1.3) - Exchange the smallest item found in step 1.2 with item i. 

Example 
 
void selection_sort(int items[], int n) 
{ 
int min_subscript; 
 
 for (int i = 0; i < n-1; i++) 
 { 
  min_subscript = find_min(items, i, n-1);                   
  
  //exchange items 
  int temp; 

temp = items[min_subscript]; 
items[min_subscript] = items[i]; 

 items[i] = temp; 
} 

} 
 


